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Abstract
The two-dimensional RSOS model of adsorption on a chemically
inhomogeneous and periodic substrate with point-like interaction between the
interface and the substrate is discussed rigorously. We prove that for weakly
inhomogeneous substrates critical wetting transitions exist. Their wetting
temperatures are higher than in the case of a homogeneous substrate whose
interaction parameter is equal to the spatial average of interaction parameters
in the inhomogeneous cases.

PACS numbers: 68.08.Bc, 61.30.Hn

1. Introduction

Adsorption on chemically inhomogeneous substrates has been the subject of increasing
experimental and theoretical interest [1], in particular because of its relations to nanofluidics
[2]. From the theoretical point of view the morphology of fluids adsorbed on patterned
substrates has often been investigated via the mean field methods in which fluctuations, say of
the order parameter or of the interfacial shapes, are neglected. This type of analysis reveals rich
structure of phase diagrams in which different types of adsorbate morphologies are present and
transitions between them have been the subject of continuing interest. On the other hand the
role of fluctuations—especially in the two-dimensional systems—may be essential not only
for the values of the relevant critical indices but also for the very existence and order of such
transitions [3]. In this paper we concentrate on the exact solution of such a low-dimensional
model of wetting of a planar, chemically inhomogeneous substrate. It consists of adjacent,
chemically different segments of varying width and is spatially periodic. The structure of the
substrate’s part forming the period can be varied within certain limits. We are interested in the
rigorous analysis of wetting transitions taking place on such substrates, and—in particular—
in the influence of the deviations from the substrate’s chemical homogeneity on its wetting
properties.

0305-4470/05/265885+09$30.00 © 2005 IOP Publishing Ltd Printed in the UK 5885

http://dx.doi.org/10.1088/0305-4470/38/26/004
mailto:pionow@fuw.edu.pl
http://stacks.iop.org/ja/38/5885


5886 P Nowakowski and M Napiórkowski

2. Model

We consider the RSOS model of wetting of a chemically inhomogeneous planar substrate.
The model is two dimensional: a one-dimensional interface separating the phase adsorbed
on the substrate from the phase away from it fluctuates in the presence of a one-dimensional
substrate whose chemical constitution varies periodically. The thermodynamics states of the
system correspond to bulk coexistence and thus complete wetting is not considered in this
paper. The lattice sites of the substrate are enumerated by the index i = 1, 2, . . . , τN , where τ

is the period, and N is the number of periods in the system. The position of the interface above
the ith substrate’s site is denoted by the discrete variable li ∈ {0, 1, 2, . . .}. The interaction
Vi(li) between the interface and the substrate at the ith site is point-like

Vi(li) = −Wiδli ,0 (1)

and is parametrized by the contact energies −Wi , a periodic function of lattice sites

Wi+τ = Wi. (2)

The RSOS Hamiltonian has the form

H{li} =
τN∑
i=1

J |li+1 − li | −
τN∑
i=1

Wiδli ,0, (3)

where J is the positive energy of increasing the length of the interface by one unit. In RSOS
model only configurations satisfying

|li+1 − li | � 1

for i = 1, 2, . . . , τN are considered. For reasons to be explained later we assume certain
symmetry of the potential within a single period

W2+i = Wτ−i (4)

for i = 0, 1, . . . , [τ/2 − 1]. The above condition allows the substrate to have segment-like
structure, with different segments having different widths. A particular case corresponds to
only two kinds of segments present, each of different width, and with any rational width ratio.

Finally, periodic boundary conditions

lτN+i = li ,

for any integer i are imposed on the system.

3. The transfer matrix calculation

The canonical partition function can be found using the transfer matrix method. In the present
case the transfer matrix is a linear operator Tτ with matrix elements

〈v1|Tτ |vτ+1〉 =
∞∑

v2=0

∞∑
v3=0

· · ·
∞∑

vτ =0

(
jδv1,v2−1 + δv1,v2 + jδv1,v2+1

)

× (
jδv2,v3−1 + δv2,v3 + jδv2,v3+1

) · · · (jδvτ ,vτ+1−1 + δvτ ,vτ+1 + jδvτ ,vτ+1+1
)

×w
1
2

(
δv1 ,0+δv2 ,0

)
1 w

δv2,0

2 w
δv3,0

3 · · ·wδvτ ,0
τ , (5)

where parameters

j = exp(−J/(kBT )), wi = exp(Wi/(kBT ))
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have been introduced. The vectors |vi〉 in equation (5) form an orthonormal base in Hilbert
space. The operator Tτ is bounded and Hermitian (if interaction with the inhomogeneous wall
satisfies the condition in equation (4)) but may be not positive.

The main properties of the model can be deduced from the spectrum � of the transfer
matrix. Let |ψ(λ)〉 be the eigenvector corresponding to the eigenvalue λ ∈ �. The largest
eigenvalue λmax and the corresponding eigenvector |ψ(λmax)〉 define—in the thermodynamic
limit—two important quantities: the probability of the interface being located at site 1 on
height v1, i.e.,

ρ1(v1) = |〈v1|ψ(λmax)〉|2, (6)

and the free energy density

f = −kBT ln µ, (7)

where

µ = (λmax)
1/τ

denotes the positive root.
The spectrum � contains the continuous part [(1 − 2j)τ , (1 + 2j)τ ], and—in addition—

there may also be discrete eigenvalues.
It is straightforward to check that the average height of interface is finite only when

λmax belongs to the discrete part of the spectrum. The wetting transition occurs when the
maximum eigenvalue enters—upon changing the temperature—the continuous part, i.e., when
the maximum eigenvalue changes its character from discrete to continuous.

The components of the maximum eigenvector ψv = 〈v|ψ(λmax)〉 can be expressed as

ψv = w
δv,0/2
1

τ∑
k=1

Akt
v
k ,

where the parameters tk satisfy the following conditions,

t2
k + j−1[1 + µ exp(2π ikτ−1)]tk + 1 = 0, |tk| � 1, (8)

and i is the imaginary unit. The above equations follow from the eigenequation for the largest
eigenvalue

∞∑
v′=1

〈v|Tτ |v′〉ψv′ = λmaxψv, (9)

when one considers v > τ cases. In the remaining v � τ cases one obtains τ linear equations
for Ak which depend on the value of τ and the interaction parameters Wi (note that equations
obtained for the v > τ cases do not depend explicitly on the wall interaction parameters Wi).
These equations may be symbolically written as

M(µ,w1, w2, . . . , wτ , j) �A = 0, (10)

with �A = [A1, A2, . . . , Aτ ]T.
Because only non-trivial solutions for Ak are physically interesting the matrix M must

fulfil a condition

L(µ,w1, w2, . . . , wτ , j) = det M = 0, (11)

which constrains possible µ values. It is easy to show that for µ > 1 + 2j the function L is
an analytical function of all its arguments. Because only roots of function L have physical
meaning it may be multiplied by any nonzero constant factor. It can be shown that for any
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period τ there exists complex number c such that cL is a real function—it gives real values
for real arguments. From now on we will assume that L is already a real function.

The function L determines all possible eigenvalues for µ > 1 + 2j . Their dependence on
temperature governs the wetting transition. There are two ways in which the largest eigenvalue
can change its character, i.e., the type of spectrum it belongs to. If the largest µ that satisfies
equation (11) decreases with temperature and reaches the boundary value 1 + 2j the average
height of the interface continuously grows to infinity; the system experiences the critical
wetting transition. If, on the other hand, two discrete eigenvalues, both µ > 1 + 2j , meet and
disappear then the average interfacial height jumps from a finite value to infinity. The critical
wetting temperature is the largest temperature for which the equation

L(µ = 1 + 2j,w1, w2, . . . , wτ , j) = 0 (12)

holds.

4. Results

The case τ = 1 corresponds to a homogeneous substrate for which straightforward calculations
show that

L(µ,w1, j) = w1 − µ + 1
2w1

(
µ − 1 −

√
(µ − 1)2 − 4j 2

)
.

It can be checked that ∂L
∂µ

�= 0, for any positive j,w1 and µ > 1 + 2j and thus function L
is monotonic and cannot have more than one root for fixed j and w1. In consequence the
second scenario described at the end of section 3 cannot take place and only critical wetting is
allowed.

Condition (12) leads to the previously obtained [4] equation for the wetting temperature

w∗
1 = 1 + 2j ∗

1 + j ∗ ,

where starred symbols are evaluated at the wetting temperature.
In the case τ = 2, the substrate consists of two kinds of segments of the same width and

L(µ,w1, w2, j) = 4µ2 + µ
(√

(µ − 1)2 − 4j 2 +
√

(µ + 1)2 − 4j 2 − 2µ
)
(w1 + w2)

+
(
µ + 1 −

√
(µ − 1)2 − 4j 2

)(
µ − 1 −

√
(µ + 1)2 − 4j 2

)
w1w2.

Although the theory does not exclude the possibility of discontinuous changes of the wetting
layer width, we could not find a set of model parameters for which a discontinuous change
would actually occur [5]. This suggests that only a continuous wetting transition may take
place in this case. For higher periods the analysis of equation (11) becomes even more
cumbersome. Nevertheless, our numerical analysis of this equation for the cases up to τ = 5
showed that only continuous wetting transitions are present in such systems. However, the
results presented below are purely analytic.

Quite generally we are able to prove that for weakly inhomogeneous substrates of arbitrary
period only critical wetting may take place. This is contained in the following theorem proved
in the appendix:

Theorem. Let T ∗
0 be the temperature of critical wetting transition in the RSOS model

(equations (3) and (4)) with homogeneous substrate characterized by interaction potential
parameter W0. For any real M > 1 there exists ε > 0 so that for arbitrary temperature
T ∈ (

1
M

T ∗
0 ,MT ∗

0

)
, and any interaction potential parameters {Wi} satisfying |Wi −W0| < εW0
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for i = 1, 2, . . . , τ the transfer matrix operator Tτ has at most one discrete eigenvalue above
its continuous spectrum.

Thus if the transfer matrix has at most one eigenvalue above its continuous spectrum then
only continuous wetting transition may occur.

To gain information about the dependence of the critical wetting temperature on the
substrate (weak) inhomogeneity we considered a model in which the interaction parameters
have the following form,

Wi = W0(1 + qix), (13)

where coefficients qi are numbers and parameter x is small enough (in agreement with the
above theorem). In addition we assumed that

1

τ

τ∑
i=1

Wi = W0, (14)

and thus
τ∑

i=1

qi = 0 (15)

so the (spatial) average of the interaction parameters has the same value as in the case of a
homogeneous substrate with the critical wetting temperature equal to T ∗

0 . We also assumed
that

τ∑
i=1

q2
i = τ, (16)

so the substrate has the same variance density for every period. The third condition
for parameters is a consequence of the symmetry of the substrate within one period (see
equation (4))

q2+i = qτ−i for i = 0, 1, . . . , [τ/2 − 1]. (17)

It turns out that the wetting temperature of the (weakly) inhomogeneous system which
fulfils equation (12) depends on x in the following way:

T ∗ = T ∗
0 + βT ∗

0 x2 + O(x3). (18)

Evaluation of factor β for all periods up to τ = 5 shows that β > 0 which means that for
weakly inhomogeneous substrates with the same average value of the interaction parameters
as in equation (14), the wetting temperature is the smallest in the homogeneous case (x = 0
in equation (13)), see figures 1 and 2. Thus, introducing weak chemical inhomogeneity of
the substrate—provided that the substrate does not change on average—leads to the presence
of critical wetting with the wetting temperature increased compared with the homogeneous
case. Similar results were obtained for a SOS model with random substrate [6]. This is in
contrast with the case of a chemically homogeneous and corrugated wall; there the wetting
temperature is smaller than in the planar substrate case [7].

We have also analysed the dependence of wetting temperature on the substrate interaction
for a continuous SOS model. In this model the distance between the wall and the interface li at
the ith lattice site can take any non-negative real value (while the substrate remains discrete).
For homogeneous case this model was discussed in [8].

Here we concentrate on the τ = 2 case and step-like wall potential. In this case the
Hamiltonian has the form

H{li} =
2N∑
i=1

J |li+1 − li | −
2N∑
i=1

V (li), (19)
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Figure 1. The β function (see equation (18)) for τ = 2 (lower curve) and τ = 3 (upper curve).
For these periods interaction parameters qi are determined uniquely by conditions (15), (16)
and (17).
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Figure 2. For period τ = 4 conditions (15), (16) and (17) give two solutions for any
−√

3 < q1 <
√

3. This figure presents the dependence of β on parameter q1 for J = kBT ∗
0 .

where

V (li) =
{
V1(li) for odd i,

V2(li) for even i,
Vn(li) =

{
Wn for li < r,

0 for li � r,

where Wi are constant and r is the interaction length (the same for each lattice site).
Similarly to [8] we used the transfer matrix technique and obtained the following equation

for eigenfunction φ and eigenvalue λ:∫ ∞

0
dy

∫ ∞

0
dz exp

[
1

2
Ṽ1(x) − J̃ |x − y| + Ṽ2(y) − J̃ |y − z| +

1

2
Ṽ1(z)

]
φ(z) = λφ(x),

where a tilde denotes that this quantity contains the factor 1/kBT , e.g. Ṽ1(x) = V1(x)

kBT
. It is

straightforward to obtain equations for eigenfunction φ(x)

d4φ<(x)

dx4
− 2J̃ 2 d2φ<(x)

dx2
+

(
J̃ 4 − 4J̃ 2

λ
eW̃1+W̃2

)
φ<(x) = 0,

d4φ>(x)

dx4
− 2J̃ 2 d2φ>(x)

dx2
+

(
J̃ 4 − 4J̃ 2

λ

)
φ>(x) = 0,
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Figure 3. β function for continuous model for τ = 2.

where

φ(x) =
{
φ<(x) for x < r,

φ>(x) for x > r,

and the corresponding boundary conditions

J̃ φ<(0) = dφ<

dx
(0), J̃

d2φ<

dx2
(0) = d3φ<

dx3
(0),

φ<(r) = eW̃1/2φ>(r),
dφ<

dx
(r) = eW̃1/2 dφ>

dx
(r),

J̃ 2φ<(r) − d2φ<

dx2
(r) = exp

(
W̃1

2
+ W̃2

) (
J̃ 2φ>(r) − d2φ>

dx2
(r)

)
,

J̃ 2 dφ<

dx
(r) − d3φ<

dx3
(r) =

(
W̃1

2
+ W̃2

) (
J̃ 2 dφ>

dx
(r) − d3φ>

dx3
(r)

)
.

The values λ for which nonzero solution of the above equations exists define the spectrum
of the transfer matrix. We found that it consists of a continuous part for λ ∈ [0, 4/J̃ ], and—
for low temperatures—additional discrete eigenvalues above the continuous part. When the
temperature becomes high enough, there are no discrete eigenvalues. Just like in the discrete
RSOS model, the wetting transition takes place when the last discrete eigenvalue disappears.

For W1 = W0(1 + x) and W2 = W0(1 − x) the dependence of the wetting temperature
on x was tested and we discovered that it has a minimum for x = 0. This means that—as in
the discrete RSOS model—the wetting temperature takes the lowest value for a homogeneous
substrate. The function β for this model is presented in figure 3.

5. Conclusions

In this paper we discussed a two-dimensional RSOS model of wetting of a planar, chemically
inhomogeneous wall with periodic structure. Within rigorous analysis the exact formula for
the system partition function was found. Although we were not able to rigorously exclude the
existence of the first-order wetting transitions no such transitions were found upon analysing
the system. It looks thus as if only critical wetting transitions are present. Moreover, for weak
periodic inhomogeneities that keep the average substrate properties intact we analytically
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proved the existence of critical wetting transitions. The temperature at which the critical
wetting transition takes place turned out to be higher than in the homogeneous case. The same
dependence of critical wetting temperature on substrate inhomogeneities was found for the
continuous model.

Appendix

In this appendix the following theorem will be proved:

Theorem. Let T ∗
0 be the temperature of critical wetting transition in the RSOS model

(equations (3) and (4)) with homogeneous substrate characterized by interaction potential
parameter W0. For any real M > 1 there exists ε > 0 so that for arbitrary temperature
T ∈ (

1
M

T ∗
0 ,MT ∗

0

)
, and any interaction potential parameters {Wi} satisfying |Wi −W0| < εW0

for i = 1, 2, . . . , τ the transfer matrix operator Tτ has at most one discrete eigenvalue above
its continuous spectrum.

First we consider the system with a homogeneous wall characterized by potential
parameter W0. This homogeneous case corresponds to arbitrary values of τ and Wi = W0,

for i = 1, 2, . . . , τ . Although the formula for function L depends on the chosen τ , the system
properties do not. Comparing formulae for free energy (before the thermodynamic limit
is taken) for different widths of the system it is straightforward to see the correspondence
between eigenvalues of the transfer matrix in both descriptions

λ
(i)
1 = (

λ(i)
τ

) 1
τ , (A.1)

where λ(k)
n is the kth eigenvalue of the transfer matrix operator for the model with period n.

The proof of the theorem is indirect. Suppose that this theorem is not true. This leads to
the existence of sequences of temperatures Tn, interacting potential parameters Wi,n and two
µ values: an > bn > 1 + 2jn for which

L(an,w1,n, . . . , wτ,n, jn) = L(bn,w1,n, . . . , wτ,n, jn) = 0,

where wi,n = exp
(Wi,n

Tn

)
and jn = exp

(− J
Tn

)
. The Rolle theorem shows that for any n there

exists cn such that an > cn > bn and
∂L

∂µ
(cn,w1n, . . . , wτn, jn) = 0.

It is straightforward to show that there exist subsequences such that

Tnk
→ T , ank

→ a, bnk
→ a, cnk

→ a, wi,nk
→ w = exp

(
W0

T

)
,

where a = 1 + 2j, j = exp
(− J

T

)
. Thus, analyticity of L leads to two equalities

L(a,w, . . . , w, j) = 0,
∂L

∂µ
(a,w, . . . , w, j) = 0.

This means that L has—in the homogeneous limit—at least a double root at µ = a.
This contradicts—via equation (A.1)—the previously stated properties of function L in the
homogeneous case.

References

[1] Drelich J, Miller J D, Kumar A and Whitesides G M 1994 Colloid Surf. A 93 1
Gau H, Herminghaus S, Lenz P and Lipowsky R 1999 Science 283 46
Bauer C and Dietrich S 1999 Eur. Phys. J. B 10 767



The RSOS model of wetting of a chemically inhomogeneous, periodic substrate 5893

Bauer C, Dietrich S and Parry A O 1999 Europhys. Lett. 47 474
Bauer C and Dietrich S 2000 Phys. Rev. E 61 1664
Lipowsky R 2001 Curr. Opin. Colloid Interface Sci. 6 40

[2] Grunze M 1999 Science 283 41
Weigl B H and Yager P 1999 Science 283 346
Dietrich S, Popescu M N and Rauscher M 2005 J. Phys.: Condens. Matter 17 S577

[3] Kroll D M 1981 Z. Phys. B 41 345
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